Final Exam - Group Theory (WIGT-07)

Monday January 22, 2017, 9:00h-12.00h
University of Groningen

Instructions

1. Write your name and student number on every page you hand in.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. Your grade for this exam is $(P+10) / 10$, where P is the number of points for this exam.

Problem 1 (15 points)

a) Give the definition of a normal subgroup of a group.

Solution: A subgroup H of a group G is normal if $a H=H a$ for all $a \in G$. (5 points)
b) Write down Lagrange's theorem.

Solution: Let H be a subgroup of a finite group G. Then $\# H$ divides $\# G$. (5 points)
c) Give the definition of a finitely generated abelian group.

Solution: A group (G, \cdot, e) is abelian if $a \cdot b=b \cdot a$ for all $a, b \in G$, It is finitely generated if there are $x_{1}, \ldots, x_{n} \in G$ such that every $x \in G$ can be written as $x=x_{i_{1}}^{ \pm 1} \cdots x_{i_{m}}^{ \pm 1}$ with $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$ (5 points)

Problem 2 (15 points)

Let $\tau=(56798)(3456)(2345)(127) \in S_{9}$.
a) Compute the order of τ.

Solution: We compute the decomposition of τ into disjoint cycles and find $\tau=(147)(2985)(36)$ (3 points). Hence $\operatorname{ord}(\tau)=\operatorname{lcm}(3 \cdot 4 \cdot 2)=12$, because the order of a product of disjoint cycles is the least common multiple of the lengths of the cycles. (2 points)
b) Compute the sign of τ.

Solution: By multiplicativity of the sign or by using the formula for the sign of a product of cycles (1 point), we find it is $(-1)^{5-1+4-1+4-1+3-1}=1$ (using the definition of τ) or $(-1)^{3-1+4-1+2-1}=1$ (using the decomposition into disjoint cycles). (2 points)
c) Find the number of elements of the conjugacy class of τ.

Solution: The conjugacy class of a permutation is determined completely by the decomposition into disjoint cycles, so the desired number of elements is the number of $\sigma=$ $\left(i_{1} i_{2}\right)\left(j_{1} j_{2} j_{3}\right)\left(k_{1} k_{2} k_{3} k_{4}\right) \in S_{9}$, where the three cycles are disjoint. (2 points) The number of k-cycles in S_{n} is $\frac{n!}{k(n-k)!}\left(1\right.$ point). Hence there are $\frac{9!}{2(9-2)!}=36$ choices for $\left(i_{1} i_{2}\right)$.

After these are fixed, there are $\frac{7!}{3(7-3)!}=70$ choices for $\left(j_{1} j_{2} j_{3}\right)$, and once this is fixed as well, 6 choices for $\left(k_{1} k_{2} k_{3} k_{4}\right)$. (3 points) Therefore the conjugacy class of τ contains $36 \cdot 70 \cdot 6=15120$ elements (1 point).

Problem 3 (20 points)

Let G be a group and let $X \subseteq G$ be non-empty. We define

$$
N_{G}(X):=\left\{a \in G: a X a^{-1}=X\right\}
$$

a) Show that $N_{G}(X)$ is a subgroup of G.

Solution: It suffices to check conditions (H1 - H3) from the lectures. (2 points) (H1): $e X e^{-1}=X$, so $e \in N_{G}(X)$ (1 point). (H2): $a, b \in N_{G}(X) \Rightarrow(a b) X(a b)^{-1}=a\left(b X b^{-1}\right) a=$ $a X a^{-1}=X$, so $a b \in N_{G}(X)$ (2 points) (H3): $a \in N_{G}(X) \Rightarrow a X a^{-1}=X \Rightarrow a^{-1} X a=X \Rightarrow$ $a^{-1} \in N_{G}(X)$ (2 points)
b) Show that

$$
\#\left\{a X a^{-1}: a \in G\right\}=\left[G: N_{G}(X)\right] .
$$

Solution: We need to show that for $a, b \in G$, we have $a X a^{-1}=b X b^{-1}$ iff $a X=b X$. Now $a X a^{-1}=b X b^{-1} \Leftrightarrow X=b^{-1} a X a^{-1} b=b^{-1} a X\left(b^{-1} a\right)^{-1} \Leftrightarrow b^{-1} a \in N_{G}(X) \Leftrightarrow a N_{G}(X)=$ $b N_{G}(X)$ (6 points)
c) Find a group G and a non-empty subset X of G such that $N_{G}(X)$ is not a normal subgroup of G.

Solution: Let $G=S_{3}$ and let $X=\{\tau\}$, where $\tau=(12) \in G$ (2 points). Obviously id, $\tau \in N_{G}(X)$ (1 point) One computes $\sigma \tau \sigma^{-1} \notin X$ for all $\sigma \in G \backslash\{\mathrm{id}, \tau\}$ (2 points), so $N_{G}(X)$ is the subgroup $H=\langle\tau\rangle$ (1 point). By the same computation, H is not normal. (1 points)
Of course, there are other examples; these are graded similarly (there are 7 points for this subproblem)

Problem 4 (10 points)

Let G be a group of order 48. Show that G is not simple.
Solution: We have $48=2^{4} \cdot 3$. (1 point) For a prime $p \mid 48$, let N_{p} be the number of Sylow-2 groups in G. If we find $N_{p}=1$ for some p, then we know that the unique Sylow p-group in G is normal and, since it has order p, it is not G or $\{e\}$, so G is not simple. (2 points)

We have $N_{2} \equiv 1(\bmod 2)$ and $N_{2} \mid 3$, so $N_{2} \in\{1,3\}$. So either $N_{2}=1$, in which case we're done, or $N_{2}=3$ (3 points). In the latter case, let X denote the set of Sylow-2 groups. We get a homomorphism $\varphi: G \rightarrow S_{X}$ given by sending $a \in G$ to conjugation γ_{a} by a (since $\gamma_{a b}=\gamma_{a} \circ \gamma_{b}$ for all $a, b \in G$) (2 points). The kernel of φ is a normal subgroup of G, so if G is simple, it has to either consist of $\{e\}$ (impossible, since $\# G=48>6=\# S_{X}$) or all of G. This means that all Sylow 2-groups are fixed by conjugation, which is not the case by Sylow's Theorem (2 points). Hence G is simple.

Problem 5 (10 points)

Let n be a positive integer and consider the subgroup $\mu_{n}:=\left\{z \in \mathbb{C}^{\times}: z^{n}=1\right\}$ of $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$ (where the group law is multiplication). Show that

$$
\mathbb{C}^{\times} / \mu_{n} \cong \mathbb{C}^{\times}
$$

Solution: Let $f_{n}: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}$be defined by $f_{n}(z):=z^{n}$. (2 points) Then $f_{n}(z w)=(z w)^{n}=$ $z^{n} w^{n}=f_{n}(z) f_{n}(w)$, so f_{n} is a homomorphism. (2 points) It is surjective, since every complex number has an nth root by the fundamental theorem of algebra. (2 points) The kernel of f_{n} is precisely μ_{n} (1 point), so the first isomorphism theorem implies (3 points)

$$
\mathbb{C}^{\times} / \mu_{n}=\mathbb{C}^{\times} / \operatorname{ker}\left(f_{n}\right) \cong f_{n}\left(\mathbb{C}^{\times}\right)=\mathbb{C}^{\times}
$$

Problem 6 (20 points)

Let $H \subset \mathbb{Z}^{3}$ be generated by $(2,0,2),(6,6,6)$ and $(8,36,38)$.
a) Find a basis of H.

Solution: Let A denote the matrix with columns equal to the given generators of H. Then $\operatorname{det}(A)=360 \neq 0$, so the given generators form a basis. (Alternatively, run the algorithm in b) and see that the rank of H is 3 , which implies the same result) (6 points)
b) Find the rank and the elementary divisors of \mathbb{Z}^{3} / H.

Solution: We apply the algorithm from the lecture (2 points) to transform A into the diagonal matrix with entries $30,6,2$. (8 points) Hence we find $\mathbb{Z}^{3} / H \cong \mathbb{Z} / 30 \mathbb{Z} / \times \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 2 / \mathbb{Z}(2$ points), so that the rank is 0 (1 point) (we can already conclude that from part a) and that the elementary divisors are $30,6,2$. (1 point)

End of test (90 points)

